COMMON CORE

 STATE STANDARDS IN MATHEMATICSVentura Unified School District Terry Ellingson, Elementary Math Specialist Natalie Albrizzio, Secondary Math Specialist

Monday, October 8, 2012
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

OBJECTIVE:

1. Let's start at the beginning
2. Philosophy and Shifts for mathematics \qquad
3. Standards overview
4. Assessment overview

THE BEGINNING - NATIONALLY 3 MINUTES

You Tube - Hunt Institute - A New Foundation for Student Success

THE BEGINNING - NATIONALLY

- Council of Chief State School Officers \qquad (CCSSO): a nonpartisan, nationwide, nonprofit organization of public officials \qquad who head departments of elementary and secondary education. \qquad
- National Governor's Association (NGA): the collective voice of the nation's governors and one of Washington, D.C.'s most respected public policy
\qquad organizations.

THE BEGINNING - CALIFORNIA

- Each state could adopt the standards as \qquad is or they could add up to 15% more.
- CA added more by including some \qquad current 1997 standards, adding an Algebra 1 option in grade 8, and adding Statistics AP and Calculus in high
\qquad school. Those standards are bold and underlined. \qquad
- The standards were adopted in CA on August 2, 2010. \qquad
\qquad

BILL McCALLUM \& JASON ZIMBA VIDEO, 8 MINUTES

The Mathematics Standards: How They \qquad Were Developed and Who Was Involved - YouTube \qquad
\qquad
\qquad
\qquad
\qquad

THE SHIFTS FOR MATHEMATICS \qquad
\qquad
oFocus
oCoherence
oRigor

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PHIL DARO VIDEO
 16 MINUTES

Phil Daro - The Formative Principles of the \qquad Common Core Standards on Vimeo

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
THE STANDARDS - CA 1997
o The 1997 CA standards are organized by grade
level for K - 7 and are presented in the same
five strands.

- Number Sense
- Algebra \& Functions
- Measurement \& Geometry
- Statistics, Data Analysis, and Probability
- Mathematical Reasoning
o The grade 8 - 12 standards are presented
under discipline headings instead of grade
levels.
- The CCSS are organized by grade level for K - 8 and are presented in different domains. The high school standards are currently listed in conceptual categories.
- The 8 Standards for Mathematical Practice are the same K - 12 .
- CAAlgebra 1 for grade 8 is currently under \qquad review. Will most likely align with the high school equivalent. \qquad
\qquad

THE STANDARDS - CCSS-M for CA \qquad
K - 5 Domains

Number and Operations - Fractions (NF)
Operations and Algebraic Thinking (OA) Measurement and Data (MD)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Conceptual Categories

High School
Number and Quantity (N)
Algebra (A)
Functions (F)
Modeling
Geometry (G)
Statistics and Probability (S)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SAMPLE OF COHERENCE

Focusing attention within Number and Operations \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

THE ASSESSMENT

\qquad

- Smarter Balanced Assessment \qquad
Consortium (SBAC)
- CA is a governing state
- Testing begins in 2014 - 2015 \qquad
- Summative test in grades $3-8$, and 11
- CA may add grades 2, 9 and 10

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SELECTED RESPONSE

Traditionally, selected-response (SR) items include a stimulus and stem followed by three to five options from which a student is \qquad directed to choose only one answer. By redesigning some SR items, it is often \qquad possible to both increase the complexity of the item and yield more useful information \qquad regarding the level of understanding about the subject(s) that a student's response \qquad demonstrates.

SELECTED RESPONSE - GRADE 3

The number sentence below can be solved using tens and ones.
$67+25=$ \qquad tens and \qquad ones

Select one number from each column to make the number sentence true. \qquad

Tens	Ones
$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 6$	$\bigcirc 5$
$\bigcirc 8$	$\bigcirc 10$
$\bigcirc 9$	$\bigcirc 12$

\qquad
\qquad
\qquad

SELECTED RESPONSE - GRADE 6

Identify the number(s) that makes each
statement true. You may select more than one number for each statement.

1a. $-4.8+\square=$ a positive number
O-5.2 ○ 4.9
1b. $\square-1 \frac{1}{2}=$ a negative number
○ $\frac{3}{2}$

- $-\frac{7}{3}$

1c. $\square+5=$ zero
O-5
○ 5
1d. $-2.15-\square=$ a negative number
○-1.75 ○ 1.34
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SELECTED RESPONSE - ALGEBRA

\qquad

Given: $(x+4)^{2}-(x-2)(x+4)$
For numbers 1a-1f, determine whether the expressions are equivalent to the expression given above, for all values of x. \qquad

1a.	24	OYes	ONo
1b.	$2(x+4)$	OYes	ONo
1c.	$-2(x-12)$	OYes	ONo
1d.	$6(x+4)$	OYes	ONo
1e.	$(x+4)-(x-2)$	OYes	ONo
1f.	$(x+4)[(x+4)-(x-2)]$	OYes	ONo

\qquad
\qquad
\qquad
\qquad

CONSTRUCTED RESPONSE

The main purpose of a constructed-response (CR) \qquad item/task is to address targets that are of greater complexity, requiring more analytical thinking and reasoning than an SR item can typically elicit.

Out of necessity, only the CRs that can be computer scored using current technologies will be assigned to the computer-adaptive component of the assessment. All other CRs will be assigned to a collection of 6 to 9 tasks that are intended to collectively take up to 120 minutes to administer.

CONSTRUCTED RESPONSE - GRADE 4

A scientist watched a group of squirrels collect acorns. Each squirrel ate some of the collected acorns and stored the rest of the collected acorns.
The table below shows data for three squirrels in the group The number of acorns each squirrel stored is missing from the table. Fill in the data that are missing from the table.

> Acorns Collected by Squirrels

Squirrel	Number Eaten	Number Stored	Total Number Collected
x	40		100
y	50		105
z	35		95

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
In the following equation, a and b are \qquad both integers.

$$
a(3 x-8)=b-18 x
$$

What is the value of a ? \square \qquad
What is the value of b ? \square
\qquad
\qquad

CONSTRUCTED RESPONSE - ALGEBRA

A restaurant serves a vegetarian and a chicken lunch special each day. Each vegetarian special is the same price. Each chicken special is the same price. However, the price of the vegetarian special is different from the price of the chicken special.

- On Thursday, the restaurant collected $\$ 467$ selling 21 vegetarian specials and 40 chicken specials.
- On Friday, the restaurant collected $\$ 484$ selling 28 vegetarian specials and 36 chicken specials.

What is the cost of each lunch special?
Vegetarian: \qquad
Chicken:
 \qquad
\qquad

EXTENDED RESPONSE

In order to distinguish the CR items/tasks that \qquad contribute to the performance task component from those that are part of the computer-adaptive component, the former will be referred to as extended-response (ER) items/tasks.

It is intended that no single ER be administered in isolation, but rather as part of a collection of 6 to 9 ER items/tasks that will serve to complete the distribution of content and targets for a welldesigned assessment, appropriate to each grade.

EXTENDED RESPONSE - GRADE 5

\qquad

Mrs. Phelps bought 4 boxes of crayons at the store to share with her students. Each box contained a total of 64 crayons
\qquad

Part A What is the total number of crayons Mrs. Phelps bought at the store? and/or words.
\qquad
\square Crayons
Part B Mrs. Phelps wants to give each of her students an equal number of the crayons she bought. There are 32 students in Mrs. Phelps' class. How many crayons should each student get?

```
Crayons
```

Part C How many more boxes of crayons does Mrs. Phelps need if she wants each of her students to get 12 crayons? y your answer using diagrams, pictures, mathematical expressions and/or words.

Boxes of Crayons

EXTENDED RESPONSE - GRADE 8

Ashley and Brandon have different methods for finding square roots.

Ashley's Method

To find the square root of x, find a number so that the product of the number and itself is x. For example, $2 \cdot 2=4$, so the square root of 4 is 2 .

Brandon's Method
Brandon's Method
To find the square root of x, multiply \times by $\frac{1}{2}$. For example, $4 \cdot \frac{1}{2}=2$.
so the square root of 4 is 2 .
Which student's method is not correct?
Ashley's method
Brandon's method
why the method you selected is not correct.

EXTENDED RESPONSE - FUNCTIONS

Part A

The rectangle shown at right has a length of 6 feet.

The value of the area of the rectangle, in square feet, is an irrationa number. Therefore, the number that represents the width of the rectangle \qquad
\qquad
B. A rational number
C. An irrational number
D. A non-real complex number

Part B
The length, I , and width, w , of the rectangle shown at right have values that are rational numbers.

[^0]
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Communication

Communication

- Teacher leaders are a critical component \qquad of the flow of transition information to your colleagues at your site.
o They will be sharing with you information from the professional development they \qquad receive.

LEARN

o Teacher leaders will learn about the CCSS-M and how their implementation will proceed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SHAPE \qquad
Teacher leaders will help you shape the

\qquad

WEBSITES:

\qquad
o Smarter Balanced Assessment Consortium: \qquad www.smarterbalanced.org
o California Common Core State Standards \& resources: www.cde.ca.gov/ci/cc

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Construct an
 that shows that the value of the area, in square feet, of the rectangle must be a rational number

